Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arginine transcriptional response does not require inositol phosphate synthesis.

Identifieur interne : 001222 ( Main/Exploration ); précédent : 001221; suivant : 001223

Arginine transcriptional response does not require inositol phosphate synthesis.

Auteurs : Daniel Bosch [Royaume-Uni] ; Adolfo Saiardi

Source :

RBID : pubmed:22992733

Descripteurs français

English descriptors

Abstract

Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.

DOI: 10.1074/jbc.M112.384255
PubMed: 22992733
PubMed Central: PMC3488103


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arginine transcriptional response does not require inositol phosphate synthesis.</title>
<author>
<name sortKey="Bosch, Daniel" sort="Bosch, Daniel" uniqKey="Bosch D" first="Daniel" last="Bosch">Daniel Bosch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saiardi, Adolfo" sort="Saiardi, Adolfo" uniqKey="Saiardi A" first="Adolfo" last="Saiardi">Adolfo Saiardi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22992733</idno>
<idno type="pmid">22992733</idno>
<idno type="doi">10.1074/jbc.M112.384255</idno>
<idno type="pmc">PMC3488103</idno>
<idno type="wicri:Area/Main/Corpus">001106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001106</idno>
<idno type="wicri:Area/Main/Curation">001106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001106</idno>
<idno type="wicri:Area/Main/Exploration">001106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arginine transcriptional response does not require inositol phosphate synthesis.</title>
<author>
<name sortKey="Bosch, Daniel" sort="Bosch, Daniel" uniqKey="Bosch D" first="Daniel" last="Bosch">Daniel Bosch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT</wicri:regionArea>
<orgName type="university">University College de Londres</orgName>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saiardi, Adolfo" sort="Saiardi, Adolfo" uniqKey="Saiardi A" first="Adolfo" last="Saiardi">Adolfo Saiardi</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Oxidoreductases (genetics)</term>
<term>Aldehyde Oxidoreductases (metabolism)</term>
<term>Arginine (metabolism)</term>
<term>Arginine (pharmacology)</term>
<term>Biocatalysis (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Inositol 1,4,5-Trisphosphate (metabolism)</term>
<term>Inositol Phosphates (biosynthesis)</term>
<term>Multienzyme Complexes (genetics)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Ornithine (metabolism)</term>
<term>Ornithine (pharmacology)</term>
<term>Ornithine Carbamoyltransferase (genetics)</term>
<term>Ornithine Carbamoyltransferase (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor) (metabolism)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Quaternary Ammonium Compounds (metabolism)</term>
<term>Quaternary Ammonium Compounds (pharmacology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Transcription, Genetic (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldehyde oxidoreductases (génétique)</term>
<term>Aldehyde oxidoreductases (métabolisme)</term>
<term>Arginine (métabolisme)</term>
<term>Arginine (pharmacologie)</term>
<term>Biocatalyse (MeSH)</term>
<term>Complexes multienzymatiques (génétique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Composés d'ammonium quaternaire (métabolisme)</term>
<term>Composés d'ammonium quaternaire (pharmacologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Inositol 1,4,5-trisphosphate (métabolisme)</term>
<term>Inositol phosphates (biosynthèse)</term>
<term>Mutation (MeSH)</term>
<term>Ornithine (métabolisme)</term>
<term>Ornithine (pharmacologie)</term>
<term>Ornithine carbamoyltransferase (génétique)</term>
<term>Ornithine carbamoyltransferase (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor) (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transcription génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Inositol Phosphates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
<term>Multienzyme Complexes</term>
<term>Ornithine Carbamoyltransferase</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
<term>Arginine</term>
<term>Inositol 1,4,5-Trisphosphate</term>
<term>Multienzyme Complexes</term>
<term>Ornithine</term>
<term>Ornithine Carbamoyltransferase</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor)</term>
<term>Quaternary Ammonium Compounds</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arginine</term>
<term>Ornithine</term>
<term>Quaternary Ammonium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Inositol phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Promoter Regions, Genetic</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
<term>Complexes multienzymatiques</term>
<term>Ornithine carbamoyltransferase</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Régions promotrices (génétique)</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
<term>Arginine</term>
<term>Complexes multienzymatiques</term>
<term>Composés d'ammonium quaternaire</term>
<term>Inositol 1,4,5-trisphosphate</term>
<term>Ornithine</term>
<term>Ornithine carbamoyltransferase</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Phosphotransferases (Carboxyl Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Arginine</term>
<term>Composés d'ammonium quaternaire</term>
<term>Ornithine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biocatalysis</term>
<term>Gene Knockout Techniques</term>
<term>Genetic Complementation Test</term>
<term>Humans</term>
<term>Mutation</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocatalyse</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Mutation</term>
<term>Techniques de knock-out de gènes</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22992733</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>287</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Arginine transcriptional response does not require inositol phosphate synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>38347-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M112.384255</ELocationID>
<Abstract>
<AbstractText>Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bosch</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saiardi</LastName>
<ForeName>Adolfo</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_U122680443</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492864">Arg5,6 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007295">Inositol Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000644">Quaternary Ammonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>85166-31-0</RegistryNumber>
<NameOfSubstance UI="D015544">Inositol 1,4,5-Trisphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E524N2IXA3</RegistryNumber>
<NameOfSubstance UI="D009952">Ornithine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.-</RegistryNumber>
<NameOfSubstance UI="D000445">Aldehyde Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.3.3</RegistryNumber>
<NameOfSubstance UI="D009954">Ornithine Carbamoyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.3.3</RegistryNumber>
<NameOfSubstance UI="C451259">arg3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C425775">ARG82 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C434257">inositol polyphosphate multikinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.2.-</RegistryNumber>
<NameOfSubstance UI="D017851">Phosphotransferases (Carboxyl Group Acceptor)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000445" MajorTopicYN="N">Aldehyde Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015544" MajorTopicYN="N">Inositol 1,4,5-Trisphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007295" MajorTopicYN="N">Inositol Phosphates</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009952" MajorTopicYN="N">Ornithine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009954" MajorTopicYN="N">Ornithine Carbamoyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017851" MajorTopicYN="N">Phosphotransferases (Carboxyl Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000644" MajorTopicYN="N">Quaternary Ammonium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22992733</ArticleId>
<ArticleId IdType="pii">M112.384255</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M112.384255</ArticleId>
<ArticleId IdType="pmc">PMC3488103</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1994 Dec 25;22(25):5767-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7838736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 15;277(46):43836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 29;280(30):27654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16123124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucl Med Biol. 2006 Jul;33(5):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Jan 15;20(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12489126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):449-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jul;49(2):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15724-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1970 Jan;12(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5434281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6121338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1986 Sep;50(3):280-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2945985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;55(2-3):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3311884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Oct;85(20):7572-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2845412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Apr;11(4):2162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1991 Dec;199(2):232-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1667455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Apr;13(4):2586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8455631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):616-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 May 1;403(3):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17274762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17563356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:856-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Dec 15;405(1-2):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2008 Feb;117(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Mar;66(4):329-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Mar;7(3):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jul;7(7):1389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2009 Jan 14;17(1):128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19141289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2009 Jul;220(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19326391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:605-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Aug;136(4):407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Dec 11;36(5):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20005845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Jun;22(3):365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20359876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Feb 2;13(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21284988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2011 Feb;36(2):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Aug;7(8):512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Aug;8(8):677-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21725298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 16;286(37):31966-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jan 19;481(7381):335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22230954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Jun 19;5(229):ra44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2012 Mar;393(3):149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biol Regul. 2012 May;52(2):351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22781748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Nov 18;9(22):1323-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jan;35(1):15-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10632874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Mar 17;287(5460):2026-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10720331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Dec 15;486(3):300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11119723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 May;2(5):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Sep 1;366(Pt 2):549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12027805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):42711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939867</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
<orgName>
<li>University College de Londres</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Saiardi, Adolfo" sort="Saiardi, Adolfo" uniqKey="Saiardi A" first="Adolfo" last="Saiardi">Adolfo Saiardi</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Bosch, Daniel" sort="Bosch, Daniel" uniqKey="Bosch D" first="Daniel" last="Bosch">Daniel Bosch</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22992733
   |texte=   Arginine transcriptional response does not require inositol phosphate synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22992733" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020